PLANT PHYSIOLOGY Lecture 26 - Responses to Temperature

I. Cardinal temperatures

П.

Ш.

IV.

- A. Minimum temperature at which growth occurs
- B. Optimal temperature at which growth occurs
- C. Maximum temperature at which growth occurs
- Phenomena of cardinal temperatures
 - A. Cardinal temperatures of most crops seeds are very close to those of normal vegetative growth
 - B. More precisely, however, different tissues within the same plant have differing cardinal temperatures
 - C. Cardinal temperature mechanisms are probably a result of enzyme induction
 - Positive responses to low temperature
 - A. Vernalization
 - 1. Specifically refers to low-temperature induction of flowering
 - 2. Location of response is probably in meristems
 - 3. Mechanism: "vernalin" may be very similar to gibberellin
 - B. Breaking of seed dormancy
 - 1. Important terms
 - a) Quiescence seed unable to germinate because specific external requirements have not been met
 - b) Dormancy seed fails to germinate because of internal conditions (even though external conditions have been met)
 - 2. What happens during germination?
 - a) Hydration/imbibition
 - b) Formation or activation of enzymes
 - c) Radicle elongation
 - d) Growth of seedling
 - C. Breaking of bud dormancy
 - 1. Bud dormancy is often induced by low temperatures (and photoperiod)
 - D. Induction of underground storage organs
 - 1. Low temperatures can induce formation of bulbs, corms, and tubers
 - E. Vegetative form and growth of plants
 - 1. Growth rates are induced by temperature thermoperiodism
 - Mechanism of low-temperature response
 - A. Enzyme-related
 - B. May be related to feedback inhibition
 - C. At low temperatures, a substance might accumulate because another compound inhibiting its production might not